jueves, 31 de mayo de 2012

5.2 Núcleo e imagen de una transformación lineal.


En esta sección se desarrollan algunas propiedades  básicas de las transformaciones lineales.
Teorema 1. Sea T: V  W una transformación lineal. Entonces para todos los vectores u, v, v1, v2,….vn en V y todos los escalares
 Nota  en la parte i el 0 de la izquierda es el vector cero en v; mientras que el cero de la derecha es el vector cero en W.
i. T(0) = T(0 + 0)= T(0) + T(0). Así 0= T(0) – T(0) = T(0) + t(0) – T(0) = T(0)
ii.T(u-v) = T[u + (-1)v] = Tu + T[(-1)v] = Tu + (-1)Tv = Tu – Tv.
iii.Esta parte se prueba por inducción (vea el apéndice 1). Para n = 2 se tiene T(α1v1 + α2v2) = T (α1v1) + T(α2v2) = α1Tv1 + α2Tv2. Así, la ecuación (1) se cumple para n = 2. Se supone que se cumple para n = k y se prueba para n=k + 1: T(α1v1 + α2v2+ ….+ αkvkk+1vk-1 ) = T(α1v1 + α2v2+….+αkvk) + T(αk+1vk+1), y usando la ecuación en la parte iii para n= k, esto es igual a (α1Tv1 + α2Tv2+….αkTvk) + αk+1Tvk+1, que es lo que se quería demostrar. Esto completa la prueba.

Observación. Los incisos i) y ii) del teorema 1 son casos especiales del inciso iii). Un dato importante sobre las transformaciones lineales es que están completamente determinadas por el efecto sobre los vectores de la base.

Teorema 2      Sea v un espacio vectorial de dimensión finita con base B= {v1,v2,….vn}. Sean w1,w2,….wn vectores en W. Suponga que T1 y T2 son dos transformaciones lineales de V en W tales que T1vi = T2vi = wi para i = 1, 2,…,n. Entonces para cualquier vector v ϵ v, T 1v = T2v; es decir T1 = T2.
Como B es una base para V, existe un conjunto único de escalares α1, α2,…., αn. Tales que  v = α1v1 + α2v2 + …+ αn vn

Entonces, del inciso iii) del teorema 1, T1v = T1(α1 v1 + α2v2 + …+ αnvn) = α1T2v1 + α2T2v2 +… + αnTnvn= α1w1 + α2w2 +…+ αnTnvn

De manera similar T2v = T2(α1v1 + α2v2 + …+ αnvn)  = α1T2v1 + α2T2v2 +…+ αnTnvn                                            = α1w1 + α2w2 +…+ αnvn

Por lo tanto, T1v =T2v.

El teorema 2 indica que si T:v W y V tiene dimensión finita, entonces sólo es necesario conocer el efecto que tiene T sobre los vectores de la base en V. Esto es, si se conoce la imagen de cada vector básico, se puede determinar la imagen de cualquier vector en V. Esto determina T por completo. Para ver esto, sean v1, v2,….vn una base en V y sea v otro vector en V. Entonces, igual que en l aprueba del teorema 2, Tv = α1Tv1 + α2Tv2 +…+ αnTvn

Así, se puede calcular Tv para cualquier vector vϵ V si se conocen Tv1,Tv2,….Tvn

Ejemplo 1 Si se conoce el efecto de una transformación lineal sobre los vectores de la base, se conoce el efecto sobre cualquier otro vector.

Sea T una transformación lineal de R3 en R2 y suponga que
Solución. Se tiene
 Entonces
Surge otra pregunta; si w1,w2,….,wn son n vectores en W, ¿existe una transformación lineal T tal que Tv1 = w1 para i = 1,2,…,n? La respuesta es sí. Como lo muestra el siguiente teorema.

Definición 1 Núcleo e imagen de una transformación lineal
Sean V y W dos espacios vectoriales y sea T:V W una transformación lineal. Entonces

i . El núcleo de T, denotado por un, está dado por
ii. La imagen de T, denotado por Im T, esta dado por
Observacion 1. Observe que un T es no vacio porque, de acuerdo al teorema 1, T(0) = 0 de manera que 0 ϵ un T para cualquier transformación lineal T. Se tiene interés en encontrar otros vectores en V que “se transformen en 0”. De nuevo, observe que cuando escribimos T(0) = 0, el 0 de la izquierda está en V y el de la derecha en W.

Observación 2. La imagen  de T es simplemente el conjunto de “imajenes” de los vectores en V bajo la transformación T. De hecho, si w = Tv, se dice que w es la imagen de v bajo T.

Antes de dar ejemplos de núcleos e imágenes , se demostrará un teorema de gran utilidad.

Teorema 4 Si T:V W es una transformación lineal, entonces
i.Un T es un subespacio de V.
ii.Im T es un subespacio de W.

Demostracion
i.Sean u y v en un T; Entonces T(u + v) = Tu + Tv =0 + 0 =0 y T( ) =  = 0 = 0 de forma que u + v y ∝u están en un T.
ii. Sean w y x en Im T. Entonces w = Tu y x = Tv para dos vestores u y v en V. Esto significa que T(u + v)= Tu + Tv = w + x y T(∝u) = ∝Tu =∝w. Por lo tanto, w + x y ∝w están en Im T.

Ejemplo 3.  Núcleo e imagen de la transformación cero
Sea Tv = 0 para todo vϵ V(T es la transformación cero). Entonces un T = v e Im T = {0}.

Ejemplo 4   Núcleo e imagen de la transformación identidad
Sea Tv = v para vϵ V(T es la transformación identidad). Entonces un T= {0} e Im T = V.

Las transformaciones cero e identidad proporcionan dos extremos. En la primera todo se                     encuentra en el núcleo. En la segunda sólo el vector cero se encuentra en el núcleo. Los casos intermedios son más interesantes.

Ejemplo 5 Núcleo e imagen de un operador de proyección
Sea T:R3 R3 definida por 
 T es el operador de proyección de R3 en el plano xy.
Entonces x = y = 0. Así, nu T = {(x,y,z):x  = y = 0, zϵR}, es decir, el eje z, e Im T = {(x,y,z): z = 0}, es decir el  plano xy. Observe que dim un T = 1 y dim Im T = 2.

Definición 2      Nulidad y rango de una transformación lineal
Si T es una transformación lineal de v en w, entonces se define.
Observación. En la sección 4.7 se definieron el rango, la imagen, el espacio nulo y la nulidad de una matriz. Según el ejemplo 5.1.7, Toda matriz A de m*n da lugar a una transformación lineal T:R´´ R´´´ definida por Tx = Ax. Es evidente que un T = NA, Im T = Im A = CA, v(T) = v(A) y p(T) = p(A). Entonces se ve que las definiciones de núcleo, imagen, nulidad y rango de una transformación lineal son extensiones del espacio nulo, la imagen, la nulidad y el rango de una matriz.

Ejemplo 6.   Núcleo y nulidad de un operador de proyección
Sea H un subespacio de R´´ y sea Tv = proyH v. Es obvio que la Im T = H. Se tiene que toda vϵ V si v=h + proyH v + proyHv. Si Tv = 0, entonces h=0, lo que significa498







7 comentarios: